博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
TensorFlow博客翻译——DeepMind转向TensorFlow
阅读量:6264 次
发布时间:2019-06-22

本文共 2870 字,大约阅读时间需要 9 分钟。

DeepMind moves to TensorFlow

DeepMind转向TensorFlow
Friday, April 29, 2016
At  , we conduct state-of-the-art   on a wide range of algorithms, from deep learning and reinforcement learning to systems neuroscience, towards the goal of building  . A key factor in facilitating rapid progress is the software environment used for research. For nearly four years, the open source   machine learning library has served as our primary research platform, combining excellent flexibility with very fast runtime execution, enabling rapid prototyping. Our team has been proud to contribute to the open source project in capacities ranging from occasional bug fixes to being core maintainers of several crucial components.
在DeepMind项目上,朝着构建人工智能的目标,我们在深度学习、增强学习到神经系统,这一系列的算法上创建了艺术级的研究。一个促进该项目快速进展的重要因素,就是研究中使用的软件环境。最近4年来,开源软件Torch7这个机器学习库一直作为我们首要的研究平台,它结合了非常完美的灵活性和十分快速的运行时执行,确保了快速建模。我们的团队非常自豪的对开源项目进行了贡献,这个贡献从最初偶尔的bug修复一直发展到成为几个关键性的模块的核心维护人员。
With Google’s recent open source release of  , we initiated a project to test its suitability for our research environment. Over the last six months, we have re-implemented more than a dozen different projects in TensorFlow to develop a deeper understanding of its potential use cases and the tradeoffs for research. Today we are excited to announce that DeepMind will start using TensorFlow for all our future research. We believe that TensorFlow will enable us to execute our ambitious research goals at much larger scale and an even faster pace, providing us with a unique opportunity to further accelerate our research programme.
对于Google最近开源的TensorFlow,我们初始化了一个工程去测试它对于我们研究环境的适应性。在最近的六个多月时间里,我们在TensorFlow上重新实现了超过一打的不同的项目,用来提高我们对它的潜在的用例和研究的初衷的理解。今天我们非常兴奋的宣布,DeepMind将开始在我们将来所有的研究中开始使用TensorFlow。我们相信,TensorFlow将确保我们可以更大尺度和以更快的步伐来执行我们雄心勃勃的研究目标,并为我们将来加速我们的研究进程提供一个独一无二的机会。
As one of the core contributors of Torch7, I have had the pleasure of working closely with an excellent community of developers and researchers, and it has been amazing to see all the great work that has been built on top of the platform and the impact this has had on the field. Torch7 is currently being used by Facebook, Twitter, and many start-ups and academic labs as well as DeepMind, and I’m proud of the significant contribution it has made to a large community in both research and industry. Our transition to TensorFlow represents a new chapter, and I feel very excited about the prospect of DeepMind contributing heavily to another great open source machine learning platform that everyone can use to advance the state-of-the-art.
作为Torch7的一个核心贡献者,我很荣幸的和一个具有非常出色的开发者和研究者的社区保持密切合作,看着这个平台上已经构建出来的那些伟大的工作,以及这些工作在领域里的影响,都令人非常的吃惊。Torch7现在已经被Facebook、Twitter和很多的创业公司和学院实验室使用,就像DeepMind一样,我非常骄傲它在研究和产业里所作出的杰出的贡献。我们转向TensorFlow将展现一个新的篇章,并且我也非常的兴奋,期待着DeepMind将为另外一个伟大的开源机器学习平台作出重要贡献,从而使得每一个人都可以推进这个艺术级的产品。

转载地址:http://bwupa.baihongyu.com/

你可能感兴趣的文章
深入理解String, StringBuffer, StringBuilder的区别(基于JDK1.8)
查看>>
【转】oracle in与exists语句的区别
查看>>
RPC 使用中的一些注意点
查看>>
Django_rest framework 框架介绍
查看>>
Hello world,Hello 2014,Bye 2013
查看>>
python之正则表达式模块
查看>>
BFC和清除浮动
查看>>
笔记:2016-06-04
查看>>
ECSHOP 布局参考图
查看>>
Entity Framework 延伸系列目录
查看>>
Java 代码安全(一) —— 避免用String储存敏感数据
查看>>
制作一个最小Linux系统
查看>>
3个著名加密算法(MD5、RSA、DES)的解析
查看>>
BBS(仿博客园系统)项目05(后台管理功能实现:文章添加、富文本编辑器使用、xss攻击、BeautifulSoup4模块、富文本编辑器上传图片、修改头像)...
查看>>
图说机房空气焓湿处理过程
查看>>
django-auth认证模块
查看>>
check build status
查看>>
int类型究竟占几个字节
查看>>
13.使用toggle()方法绑定多个函数
查看>>
springboot集成redis
查看>>